Mixed-state additivity properties of magic monotones based on quantum relative entropies for single-qubit states and beyond

University of Tokyo

Joint work with Roberto Rubboli and Marco Tomamichel

Ryuji Takagi

[Quantum 8, 1492 (2024)]

Introduction

Quantum resource theories and magic measures

underlying given physical and operational settings.

Quantum resource theories: Framework to deal with quantification and manipulation of quantum resources

Here, \mathbb{F} : stabilizer states, \mathbb{O} : stabilizer protocols

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

- **Big goal**: Quantitative understanding of quantum resources enabling quantum advantages

• Quantum entanglement

[Horodecki et al. Rev. Mod. Phys. '09]

• Quantum thermodynamics

[Horodecki, Oppenheim, Nat. Commun. '13]

Good resource measures...?

Necessary property for resource measure: monotonicity $M(\rho) \ge M(\Lambda(\rho)) \qquad \forall \Lambda \in \mathbb{O}$

There are infinitely many monotones. What are "good" ones?

- Computable (e.g., stabilizer Renyi entropy for pure states)
- Operational interpretation (e.g., robustness)
- Useful in restricting state transformation $\rho \xrightarrow{} \tau$

Additive measure $M(\rho_1 \otimes \rho_2) = M(\rho_1) + M(\rho_2)$ is useful

Great interest in finding additive measure of entanglement

[Christandl, Winter, J. Math. Phys. '04]

Implications to state transformation

Asymptotic transformation $\rho^{\otimes n} \rightarrow \tau^{\otimes m}$

Minimum *n* required (converse of asymptotic

Catalytic transformation $\rho \otimes \eta \rightarrow \tau \otimes \eta$ If *M* is additive, $M(\rho) + M(\eta) \ge M(\rho \otimes \eta) \ge$

Can magic measure be additive?

Some measures are known to be additive [Seddon et al. PRX Quantum '21]

We add a new family of additive magic measures and get new bounds for state transformation

Stabilizer fidelity

Subadditivity $\mathscr{D}_{fid}(\rho_1 \otimes \rho_2) \leq \mathscr{D}_{fid}(\rho_1) + \mathscr{D}_{fid}(\rho_2)$ Letting $\sigma_i \in \text{STAB}$ satisfy $\mathcal{D}_{\text{fid}}(\rho_i) = \log F(\rho_i, \sigma_i)$ $\mathscr{D}_{\text{fid}}(\rho_1 \otimes \rho_2) \leq \log F(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2)^{-1} = \log F(\rho_1, \sigma_1)^{-1} + \log F(\rho_2, \sigma_2)^{-1} = \mathscr{D}_{\text{fid}}(\rho_1) + \mathscr{D}_{\text{fid}}(\rho_2)$ Superadditivity $\mathscr{D}_{fid}(\rho_1 \otimes \rho_2) \geq \mathscr{D}_{fid}(\rho_1) + \mathscr{D}_{fid}(\rho_2)$ would imply additivity

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

 $\min d(\rho, \sigma)$ is a resource monotone if d satisfies data-processing

$$(\rho, \sigma) = \log F(\rho, \sigma)^{-1}$$
 $F(\rho, \sigma) = \left(\text{Tr} \sqrt{\sigma^{1/2} \rho \sigma^{1/2}} \right)$

[Bravyi et al., Quantum '19]

$$_{\rm d}(
ho_2)$$
 is easy to see

$$(\sigma_i)^{-1}$$

Stabilizer fidelity

Superadditivity $D_{\text{fid}}(\rho_1 \otimes \rho_2) \geq \mathscr{D}_{\text{fid}}(\rho_1) + \mathscr{D}_{\text{fid}}(\rho_2)$ is non-trivial.

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

min $d(\rho, \sigma)$ is a resource monotone if d satisfies data-processing

$$\rho, \sigma$$
 = log $F(\rho, \sigma)^{-1}$ $F(\rho, \sigma) = \left(\text{Tr} \sqrt{\sigma^{1/2} \rho \sigma^{1/2}} \right)$

[Bravyi et al., Quantum '19]

 $\sigma_{12} \in \text{STAB}$ such that $\mathscr{D}_{\text{fid}}(\rho_1 \otimes \rho_2) = \log F(\rho_1 \otimes \rho_2, \sigma_{12})^{-1}$ may not be product $\sigma_{12} = \sigma_1 \otimes \sigma_2$

For pure states $\psi_{1,2}$ up to three qubits, $\mathscr{D}_{fid}(\psi_1 \otimes \psi_2) \geq \mathscr{D}_{fid}(\psi_1) + \mathscr{D}_{fid}(\psi_2)$ additivity!

What about mixed states?

[Bravyi et al., Quantum '19]

Magic measures with quantum relative entropies

Magic measures with $\alpha - z$ Renyi divergences

$$D_{\alpha,z}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z}$$

$$z = 1$$
 Petz divergence
 $D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr}(\rho^{\alpha} \sigma^{1 - \alpha})$

Limiting cases

$$D_{\min}(\rho \| \sigma) = -\log \operatorname{Tr}[\Pi(\rho)\sigma] \qquad D(\rho \| \sigma) = \operatorname{Tr}[\Pi(\rho)\sigma] = \lim_{\alpha \to 0} D_{\alpha,1-\alpha}(\rho \| \sigma) = \lim_{\alpha \to 0} D_{\alpha,1-\alpha}(\rho \| \sigma)$$

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

[Audenaert, Datta, JMP '15]

 $z = \alpha$ Sandwiched divergence $\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right]^{\alpha}$

 $r\rho(\log\rho - \log\sigma) \qquad D_{\max}(\rho \| \sigma) = \log \| \sigma^{-1/2} \rho \sigma^{-1/2} \|_{\infty}$ $\max_{1} D_{\alpha,\alpha}(\rho \| \sigma)$ $= \lim D_{\alpha,\alpha-1}(\rho \| \sigma)$ $\rightarrow 1$ $\alpha \rightarrow \infty$

$$D_{a,z}(\rho || \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z}$$
Blue: "data-processing inequality region"
$$Z = \left| \alpha - 1 \right|$$

$$(\operatorname{generalized robusiness of imagic)}$$

$$Z = \left| \alpha - 1 \right|$$

$$(\operatorname{generalized robusiness of imagic)}$$

$$D_{max}(\rho | \sigma) = \log \operatorname{Ir}(\Pi(\rho)\sigma)$$

$$(\operatorname{nin-relative entropy of magic)}$$

$$(\operatorname{relative entropy of magic)}$$

$$D_{1/2, 1/2}(\rho || \sigma) = -2 \log \operatorname{Tr} \sqrt{\sigma^{1/2} \rho \sigma^{1}}$$

$$= \log F(\rho, \sigma)^{-1}$$

$$(\operatorname{fid}(\rho) = \mathfrak{D}_{1/2, 1/2}(\rho)$$

Additivity of single-qubit states

For any single-qubit states $\{\rho_i\}_i$, $\mathscr{D}_{\alpha,z}(\bigotimes$

Extending pure-state additivity of stabilizer fidelity

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

Blue: "data-processing inequality region" $z = |\alpha - 1| \qquad D_{\alpha, z}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z}$ $\mathcal{D}_{\alpha,z}(\rho) := \min_{\sigma \in \text{STAB}} D_{\alpha,z}(\rho \| \sigma)$ $\mathcal{D}_{\text{fid}}(\rho) = \mathcal{D}_{1/2,1/2}(\rho)$

$$\mathfrak{D}_i \rho_i) = \sum_i \mathfrak{D}_{\alpha, z}(\rho_i) \text{ for } z = \left| \alpha - 1 \right|$$

Proof idea

 $D_{\alpha,z}(\rho \| \sigma) =$

Core part of the issue

 $\mathcal{D}_{\alpha,z}(\rho_1 \otimes \rho_2) = D_{\alpha,z}(\rho_1 \otimes \rho_2 \| \sigma_{12})$ Does the optimizer have the form $\sigma_{12} = \sigma_1 \otimes \sigma_2$?

Condition for state σ to be an optimizer of $\min_{\sigma \in \text{STAB}} D_{\alpha, \tau}(\rho \| \sigma)$

 σ is an optimizer if and only if $\operatorname{Tr}(\tilde{\sigma} \Xi_{\alpha,z}(\rho)) \leq Q_{\alpha,z}(\rho \| \sigma)$

$$Q_{\alpha,z}(\rho \| \sigma) := \exp\left[(\alpha - 1) D_{\alpha,z}(\rho \| \sigma) \right] \quad \Xi(\rho, \sigma)$$

This is linear in $\tilde{\sigma} \in \text{STAB}$. Much simpler than original nonlinear minimization.

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

$$= \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z} \qquad \mathcal{D}_{\alpha, z}(\rho) := \min_{\sigma \in \operatorname{STAB}} D_{\alpha, z}(\rho)$$

 $\forall \tilde{\sigma} \in \text{STAB}$

 σ): operator depending on ρ, σ

cf. [Rubboli, Tomamichel, Commun. Math. Phys. '22]

Proof idea

 $D_{\alpha,z}(\rho \| \sigma) =$ **Core part of the issue**

 $\mathcal{D}_{\alpha, \tau}(\rho_1 \otimes \rho_2) = D_{\alpha, \tau}(\rho_1 \otimes \rho_2 \| \sigma_{12})$

 σ is an optimizer if and only if $\operatorname{Tr}(\tilde{\sigma} \Xi_{\alpha,z}(\rho,\sigma)) \leq Q_{\alpha,z}(\rho \| \sigma) \quad \forall \tilde{\sigma} \in \operatorname{STAB}$

Take optimizers σ_1 and σ_2 for $\mathscr{D}_{\alpha,z}(\rho_1)$ and $\mathscr{D}_{\alpha,z}(\rho_2)$, and check if $\sigma_1 \otimes \sigma_2$ is an optimizer $\operatorname{Tr}(\tilde{\sigma} \Xi_{\alpha,z}(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2)) \leq Q_{\alpha,z}(\rho_1 \otimes \rho_2 \| \sigma_1 \otimes \sigma_2) = Q_{\alpha,z}(\rho_1 \| \sigma_1) Q_{\alpha,z}(\rho_2 \| \sigma_2) \quad \forall \tilde{\sigma} \in \operatorname{STAB}$

 $\Xi_{\alpha,z}(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2) = \Xi_{\alpha,z}(\rho_1, \sigma_1) \Xi_{\alpha,z}(\rho_1, \sigma_2) = \Xi_{\alpha,z}(\rho_1, \sigma$

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

$$= \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z} \qquad \mathcal{D}_{\alpha, z}(\rho) := \min_{\sigma \in \text{STAB}} D_{\alpha, z}(\rho \| \sigma)$$

Does the optimizer have the form $\sigma_{12} = \sigma_1 \otimes \sigma_2$?

$$Q_{\alpha,z}(\rho \| \sigma) := \exp\left[(\alpha - 1) D_{\alpha,z}(\rho \| \sigma) \right]$$

multiplicativity of $Q_{\alpha,z}$ (easy to show)

$$\alpha_{\alpha,z}(\rho_2,\sigma_2)$$
 for $z = \left| \alpha - 1 \right|$

Proof idea

 $D_{\alpha,7}(\rho \| \sigma) =$

Using $\Xi_{\alpha,z}(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2) = \Xi_{\alpha,z}(\rho_1, \sigma_1)$ $\operatorname{Tr}(\tilde{\sigma} \Xi_{\alpha,z}(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2)) \le Q_{\alpha,z}(\rho_1 \otimes \rho_2 \| \sigma_1 \otimes \sigma_2) = Q_{\alpha,z}(\rho_1 \| \sigma_1) Q_{\alpha,z}(\rho_2 \| \sigma_2)$ reduces to

$\max_{\sigma \in \text{STAB}} \text{Tr}(\sigma_{12} \tilde{\rho}_1 \otimes \tilde{\rho}_2) = \max_{\sigma_1 \in \text{STAB}} \text{Tr}(\sigma_1 \tilde{\rho}_1) \max_{\sigma_2 \in \text{STAB}} \text{Tr}(\sigma_2 \tilde{\rho}_2), \forall \tilde{\rho}_1, \tilde{\rho}_2$ $\sigma \in STAB$

which can be shown for single-qubit states $ilde ho_1$ and $ilde ho_2$.

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

$$\frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z} \quad \mathcal{D}_{\alpha, z}(\rho) := \min_{\sigma \in \operatorname{STAB}} D_{\alpha, z}(\rho \| \sigma)$$
$$Q_{\alpha, z}(\rho \| \sigma) := \exp \left[(\alpha - 1) D_{\alpha, z}(\rho \| \sigma) \right]$$

)
$$\Xi_{\alpha,z}(\rho_2,\sigma_2)$$
 for $z = |\alpha - 1|$

 $\forall \tilde{\sigma} \in \text{STAB}$

14/20

More additivity for standard magic states

We can extend additivity to general α and z for some class of magic states. $\Delta_p(\rho) := (1 - p)\rho + p I/d$: depolarizing channel

state ψ_i and some $p_i \ge 0$. If the optimizer σ_i such that $\mathscr{D}_{\alpha,z}(\rho_i) = D_{\alpha,z}(\rho_i || \sigma_i)$ is a depolarized state from ρ_i such that $\Delta_{s_i}(\sigma_i)$ for some $s_i \ge 0$, then it holds that

$$\mathcal{D}_{\alpha,z}(\bigotimes_i \rho_i) = \sum_i \mathcal{D}_{\alpha,z}(\rho_i)$$

for any α and z in the "data-processing region".

This includes
$$T = \frac{1}{2} \left(\mathbb{I} + \frac{X+Y}{\sqrt{2}} \right), F = \frac{1}{2} \left(\mathbb{I} + \frac{X+Y+Z}{\sqrt{3}} \right), |\text{Toffoli}\rangle = \text{Toffoli} |++0\rangle$$

- Let $\{\rho_i\}_i$ be states on at most three-qubit systems such that $\rho_i = \Delta_{p_i}(\psi_i)$ for some pure

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

Applications

Asymptotic magic state transformation rate

$$R(\rho \to \tau) := \sup \left\{ r \left| \rho^{\otimes n} \xrightarrow{\epsilon_n}_{\text{STAB}} \tau^{\otimes rn}, \lim_{n \to \infty} \epsilon_n \right. \right.$$

 $R(\rho \to \tau) \leq \frac{\mathscr{D}^{\infty}(\rho)}{\mathscr{D}^{\infty}(\tau)}$

$$\mathscr{D}^{\infty}(\rho) := \lim_{n \to \infty} \frac{\mathscr{D}(\rho^{\otimes n})}{n} \qquad \mathscr{D}(\rho) := \min_{\sigma \in \text{STAB}} D(\rho \| \sigma)$$

[Horodecki, Oppenheim, Int J. Mod. Phys. B '13] Computable upper bound?

Improves the previous best single-copy bound.

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

$$= 0$$

τ : single-qubit state

[Seddon et al., PRX Quantum '21]

Deterministic and probabilistic magic state manipulation

 $\rho^{\otimes n} \xrightarrow[STAB]{} \tau$ with probability p

$$n\mathcal{D}_{\alpha,z}(\rho) \geq \frac{\alpha}{\alpha-1} \log \left[p \mathcal{Q}_{\alpha,z}^{\frac{1}{\alpha}}(\tau) + (1 - \alpha) \right]$$

Another application of our measure : new bound for magic state distillation

$$T_{\delta} := (1 - \delta) \left| T \right\rangle \langle T \right| + \delta \frac{\mathbb{I}}{2} \qquad T_{\delta}^{\otimes n} \xrightarrow{\varepsilon}_{\text{STAB}} \left| T \right\rangle \langle T \right| \text{ with probability } p$$

Our result provides a lower bound for the overhead n

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

$$D_{\alpha,z}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right]^{z}$$

$$\begin{aligned} & \mathcal{D}_{\alpha,z}(\rho) := \min_{\sigma \in \text{STAB}} D_{\alpha,z}(\rho \| \sigma) \\ & Q_{\alpha,z}(\rho \| \sigma) := \exp\left[(\alpha - 1) D_{\alpha,z}(\rho \| \sigma) \right] \end{aligned}$$

$$\mathcal{Q}_{\alpha,z}(\rho) := \exp\left[(\alpha - 1)\mathcal{D}_{\alpha,z}(\rho)\right]$$

Implication of additivity for $\mathscr{D}_{\alpha,z}$: $\mathscr{Q}_{\alpha,z}(\tau^{\otimes m}) = \left[\mathscr{Q}_{\alpha,z}(\tau) \right]^m$ Right-hand side computable

Deterministic and probabilistic magic state manipulation

Conclusions and outlook

- New family of additive magic measure including stabilizer fidelity and $D_{\rm max}$ measure
- Additivity shown by "linearization" technique characterizing minimizer of divergences
- Put new fundamental limitations on magic state transformation

- Extend the additivity to all states on at most three-qubit systems.
- Tensor product additive, superadditive faithful magic measure?

Ryuji Takagi Mixed-state additivity properties of magic monotones based on quantum relative entropies [Quantum 8, 1492 (2024)]

Thank you!

